For the best guide in your studies and mathematics tutorials with videos, visit ogschools.com
1979-7: In base ten, the number 101101(base 2) equals
Solution
{ 101101 }_{ 2 }\\ 1\times { 2 }^{ 5 }+0\times { 2 }^{ 4 }+1\times 2^{ 3 }+1\times { 2 }^{ 2 }+0\times { 2 }^{ 1 }+1\times { 2 }^{ 0 }\\ 32+8+4+1\\ { 45 }_{ 10 }
1980-49: Write the decimal number 39 t0 base 2
Solution
2 | 39 | R |
2 | 19 | 1 |
2 | 9 | 1 |
2 | 4 | 1 |
2 | 2 | 0 |
2 | 1 | 0 |
0 | 1 |
\therefore \quad Ans={ 100111 }_{ 2 }
1983-21: Find x if { ({ x }_{ 4 }) }^{ 2 }={ 100100 }_{ 2 }
Solution
{ x }_{ 4 }=x\times { 4 }^{ 0 }=x\\ { 100100 }_{ 2 }=1\times { 2 }^{ 5 }+1\times { 2 }^{ 2 }=32+4=36\\ { x }^{ 2 }=36\\ x=6
4 | 6 | R |
4 | 1 | 2 |
0 | 1 |
Ans={ 12 }_{ 4 }
1984-12: A trader in a country where their currency ‘MONI'(M) is in base five bought { 103 }_{ 5 } oranges at { M14 }_{ 5 } each. If he sold the oranges at { M24 }_{ 5 } each, what will be his gain?
Solution
total\quad price\quad of\quad oranges\quad bought:\quad 103\times 24=3032\\ total\quad price\quad of\quad oranges\quad sold:\quad 103\times 14=2002\\ gain:\quad 3032-2002=1030\\ \therefore \quad Ans={ M1030 }_{ 5 }\\
1985-3: In the equation below, solve for x if all the numbers are in base 2: \frac { 11 }{ x } =\frac { 1000 }{ x+101 } , leaving your answer in base 2.
Solution
\frac { 11 }{ x } =\frac { 1000 }{ x+101 } \\ { 11 }_{ 2 }=1\times { 2 }^{ 1 }+1\times { 2 }^{ 0 }=2+1=3\\ { 1000 }_{ 2 }=1\times { 2 }^{ 3 }=8\\ { 101 }_{ 2 }=1\times { 2 }^{ 2 }+1\times { 2 }^{ 0 }=5\\ \frac { 3 }{ x } =\frac { 8 }{ x+5 } \\ 3x+15=8x\\ 15=8x-3x\\ 5x=15\\ x={ 3 }_{ 10 }
2 | 3 | R |
2 | 1 | 1 |
0 | 1 |
\therefore \quad Ans={ 11 }_{ 2 }
1986-1: Evaluate { 212 }_{ 3 }-{ 121 }_{ 3 }+{ 222 }_{ 3 }\\
Solution
{ 212 }_{ 3 }-{ 121 }_{ 3 }={ 101 }_{ 3 }\\ { 212 }_{ 3 }+101={ 1020 }_{ 3 }\\ \therefore \quad Ans={ 1020 }_{ 3 }\\
1987-1: Convert 241 in base 5 to base 8
Solution
{ 241 }_{ 5 }=2\times { 5 }^{ 2 }+4\times { 5 }^{ 1 }+1\times { 5 }^{ 0 }=50+20+1=71\\
8 | 71 | R |
8 | 8 | 7 |
8 | 1 | 0 |
0 | 1 |
\therefore \quad Ans={ 107 }_{ 8 }
1991-2: If 2257 is the result of subtracting 4577 from 7056 in base n, find n
Solution
{ 7056 }_{ n }-{ 4577 }_{ n }={ 2257 }_{ n }\\ 7\times { n }^{ 3 }+5\times { n }_{ 1 }+6\times { n }^{ 0 }-(4\times { n }^{ 3 }+5\times { n }^{ 2 }+7\times { n }^{ 1 }+7\times { n }^{ 0 })=2\times { n }^{ 3 }+2\times { n }^{ 2 }+5\times { n }^{ 1 }+7\times { n }^{ 0 }\\ 7{ n }^{ 3 }+5n+6-{ 4n }^{ 3 }-5{ n }^{ 2 }-7n-7=2{ n }^{ 3 }+2{ n }^{ 2 }+5n+7\\ 3{ n }^{ 3 }-5{ n }^{ 2 }-2n-1=2{ n }^{ 3 }+2{ n }^{ 2 }+5n+7\\ { n }^{ 3 }-7{ n }^{ 2 }-7n=8\\ \therefore n=8\\
1992-1: Find n if { 34 }_{ n }={ 10011 }_{ 2 }\\
Solution
{ 34 }_{ n }={ 10011 }_{ 2 }\\ 3\times { n }^{ 1 }+4\times { n }^{ 0 }=1\times { 2 }^{ 4 }+1\times { 2 }^{ 1 }+1\times { 2 }^{ 0 }\\ 3n+4=19\\ 3n=19-4\\ 3n=15\\ n=5
1993-1: Change { 71 }_{ 10 } to base 8
Solution
8 | 71 | R |
8 | 8 | 7 |
8 | 1 | 0 |
0 | 1 |
\therefore Ans={ 107 }_{ 8 }
1995-1: Calculate { 3310 }_{ 5 }-{ 1442 }_{ 5 }
Solution
{ 3310 }_{ 5 }-{ 1442 }_{ 5 }={ 1313 }_{ 5 }
1997-1: If { (1p03) }_{ 4 }={ 115 }_{ 10 }, find p
Solution
{ 1p03 }_{ 4 }={ 115 }_{ 10 }\\ 1\times { 4 }^{ 3 }+p\times { 4 }^{ 2 }+3\times { 4 }^{ 0 }=115\\ 64+16p+3=115\\ 16p=115-67\\ 16p=48\\ p=3
1998-1: If { 1011 }_{ 2 }+{ x }^{ 7 }={ 25 }_{ 10 }, solve for x
Solution
{ 1011 }_{ 2 }+{ x }^{ 7 }={ 25 }_{ 10 }\\ 1\times { 2 }^{ 3 }+1\times { 2 }^{ 1 }+1\times { 2 }^{ 0 }+x\times { 2 }^{ 0 }=25\\ 8+2+1+x=25\\ 11+x=25\\ x=14
1999-1: { 2 }_{ 9 }\times { (y3) }_{ 9 }={ 3 }_{ 5 }\times { (y3) }_{ 5 }. Find the value of y
Solution
{ 2 }_{ 9 }\times { (y3) }_{ 9 }={ 3 }_{ 5 }\times { (y3) }_{ 5 }\\ 2\times (9y+3)=3\times (5y+3)\\ 18y+6=15y+9\\ 3y=3\\ y=1
1999-2: Divide { 2434 }_{ 6 }\quad by\quad { 42 }_{ 6 } and leave your answer in base 6
Solution
{ 2434 }_{ 6 }=2\times { 6 }^{ 3 }+4\times { 6 }^{ 2 }+3\times { 6 }^{ 1 }+4\\ =432+144+18+4\\ =598\\ { 42 }_{ 6 }=4\times { 6 }^{ 1 }+2=26\\ \frac { 598 }{ 26 } ={ 23 }_{ 10 }
6 | 23 | R |
6 | 3 | 5 |
0 | 3 |
\therefore \quad Ans={ 35 }_{ 6 }
2000-8: If { p344 }_{ 6 }-{ 23p2 }_{ 6 }={ 2pp2 }_{ 6 }, find the value of digit p
Solution
{ p344 }_{ 6 }=p\times { 6 }^{ 3 }+3\times { 6 }^{ 2 }+4\times { 6 }^{ 1 }+4\times { 6 }^{ 0 }\\ =216p+108+24+4\\ =216p+136\\ { 23p2 }_{ 6 }=2\times { 6 }^{ 3 }+3\times { 6 }^{ 2 }+p\times 6+2\\ =432+108+6p+2\\ =6p+542\\ { 2pp2 }_{ 6 }=2\times { 6 }^{ 3 }+p\times { 6 }^{ 2 }+p\times { 6 }^{ 1 }+2\times { 6 }^{ 0 }\\ =432+36p+6p+2\\ =42p+434\\ \therefore 216p+136-(6p+542)=42p+434\\ 210p-406=42p+434\\ 168p=840\\ p=5
2000-11: If { 314 }_{ 10 }-{ 256 }_{ 7 }={ 340 }_{ x }, find x
Solution
{ 314 }_{ 10 }=314\\ { 256 }_{ 7 }=2\times { 7 }^{ 2 }+5\times { 7 }^{ 1 }+6\times { 7 }^{ 0 }=98+35+6=139\\ { 340 }_{ x }=3\times { x }^{ 2 }+4\times { x }^{ 1 }=3{ x }^{ 2 }+4x\\ \therefore \quad 314-139=3{ x }^{ 2 }+4x\\ 3{ x }^{ 2 }+4x-175=0\\ a=3,\quad b=4,\quad c=-175\\ x=\frac { -b\pm \sqrt { { b }^{ 2 }-4ac } }{ 2a } \\ substituting\quad the\quad values\quad of\quad a,b\quad and\quad c\\ x=7\quad or\quad \frac { -50 }{ 6 } \\ since\quad x\quad can't\quad be\quad a\quad negative\quad number\quad or\quad fraction,\\ then\quad x=7\\
2003-5: Simplify { 213 }_{ 4 }\times { 23 }_{ 4 }
Solution
\therefore \quad Ans=12231
2003-7: The sum of four numbers is { 1214 }_{ 5 }. What is the average expressed in base five?
Solution
{ 1214 }_{ 5 }=1\times { 5 }^{ 3 }+2\times { 5 }^{ 2 }+1\times { 5 }^{ 1 }+4\times { 5 }^{ 0 }\\ =125+50+5+4\\ =184\\ \frac { 184 }{ 4 } ={ 46 }_{ 10 }\\
5 | 46 | R |
5 | 9 | 1 |
5 | 1 | 4 |
0 | 1 |
\therefore \quad Ans={ 141 }_{ 5 }
2004-2: Find p, if { 451 }_{ 6 }-{ p }_{ 7 }={ 305 }_{ 6 }
Solution
{ 451 }_{ 6 }-{ p }_{ 7 }={ 305 }_{ 6 }\\ { p }_{ 7 }={ p }_{ 6 }\\ { 451 }_{ 6 }-{ p }_{ 6 }={ 305 }_{ 6 }\\ { p }_{ 6 }={ 451 }_{ 6 }-{ 305 }_{ 6 }\\ { p }_{ 6 }={ 142 }_{ 6 }\\ { 142 }_{ 6 }=1\times { 6 }^{ 2 }+4\times { 6 }^{ 1 }+2=36+24+2={ 62 }_{ 10 }\\
7 | 62 | R |
7 | 8 | 6 |
7 | 1 | 1 |
0 | 1 |
\therefore \quad Ans={ 116 }_{ 7 }
2005-1: Find the value of m if { 13 }_{ m }+{ 24 }_{ m }={ 41 }_{ m }
Solution
{ 13 }_{ m }+{ 24 }_{ m }={ 41 }_{ m }\\ m+3+2m+4=4m+1\\ 3m+7=4m+1\\ m=6
2005-2: If { 321 }_{ 4 } is divided by {23}_{4} and leaves a remainder r, what is the value of r?
Solution
{ 321 }_{ 4 }=3\times { 4 }^{ 2 }+2\times { 4 }^{ 1 }+1\times { 4 }^{ 0 }=48+8+1=57\\ { 23 }_{ 4 }=2\times { 4 }^{ 1 }+3\times { 4 }^{ 0 }=8+3=11\\ \frac { 57 }{ 11 } =5\quad remainder\quad 2\\ { 2 }_{ 10 }={ 2 }_{ 4 }\\ \therefore \quad r=2
2006-34: If { (k2) }_{ 6 }\times { 3 }_{ 6 }={ 3 }_{ 5 }\times { (k4) }_{ 5 }, what is the value of k?
Solution
{ (k2) }_{ 6 }\times { 3 }_{ 6 }={ 3 }_{ 5 }\times { (k4) }_{ 5 }\\ (6k+2)3=3(5k+4)\\ 18k+6=15k+12\\ 3k=6\\ k=2
2006-36: Convert { 2232 }_{ 4 } to a number in base 6
Solution
{ 2232 }_{ 4 }=2\times { 4 }^{ 3 }+2\times { 4 }^{ 2 }+3\times { 4 }^{ 1 }+2\\ =128+32+12+2\\ ={ 174 }_{ 10 }
6 | 174 | R |
6 | 29 | 0 |
6 | 4 | 5 |
0 | 4 |
\therefore \quad Ans={ 450 }_{ 6 }
2006-39: compute { 110011 }_{ 2 }+{ 11111 }_{ 2 }
Solution
2007-49: If { x }_{ 10 }={ 1214 }_{ 5 }, find x
Solution
{ x }_{ 10 }={ 1214 }_{ 5 }\\ x=1\times { 5 }^{ 3 }+2\times { 5 }^{ 2 }+1\times { 5 }^{ 1 }+4\times { 5 }^{ 0 }\\ x=125+50+5+4\\ x=184
2008-2: If { 125 }_{ x }={ 20 }_{ 10 }, find x
Solution
{ 125 }_{ x }={ 20 }_{ 10 }\\ { x }^{ 2 }+2x+5=20\\ { x }^{ 2 }+2x-15=0\\ { x }^{ 2 }+5x-3x-15=0\\ ({ x }^{ 2 }+5x)-(3x+15)=0\\ x(x+5)-3(x+5)=0\\ (x-3)(x+5)=0\\ x=3\quad or\quad -5\\ since\quad x\quad can't\quad be\quad negative,\\ x=3
2009-2: If { 55 }_{ x }+{ 52 }_{ x }={ 77 }_{ 10 }, find x
Solution
{ 55 }_{ x }+{ 52 }_{ x }={ 77 }_{ 10 }\\ 5x+5+5x+2=77\\ 10x+7=77\\ 10x=70\\ x=7
2010-2: Find r, if { 6r7 }_{ 8 }={ 511 }_{ 9 }
Solution
{ 6r7 }_{ 8 }={ 511 }_{ 9 }\\ { 6r7 }_{ 8 }=6\times { 8 }^{ 2 }+r\times { 8 }^{ 1 }+7\times { 8 }^{ 0 }=384+8r+7=391+8r\\ { 511 }_{ 9 }=5\times { 9 }^{ 2 }+1\times 9+1=405+9+1=415\\ 391+8r=415\\ 8r=415-391\\ 8r=24\\ r=3
2012-2: If { 2q3 }_{ 5 }={ 77 }_{ 8 }, find q
Solution
{ 2q3 }_{ 5 }={ 77 }_{ 8 }\\ 2\times 25+5q+3=56+7\\ 50+5q+3=63\\ 5q=10\\ q=2
This is as much as we can take on this topic. If you feel there’s any other question on this topic giving you problem feel free to drop it. Be rest assured that it will be solved. No one is above errors, notify us if you feel there was an error in any of the calculations
Related topics
Solutions to jamb mathematics numbers and numeration questions
Solutions to jamb mathematics binary operations
Solutions to jamb mathematics applications of differentiation questions
Solutions to jamb mathematics indices, logarithms, and surds questions
Nelson says
I really enjoy your write-up it’s really helpful. thank you keep up the good work
Prettylifestylez says
Thanks. I’m glad you liked it
Promise says
It really helpful,I enjoyed it 🤔
Master C Brown says
Your solutions are unique
Victoria says
1992-1
Why is the answer 15? Is 25-11=15
I thought it is 14
Prettylifestylez says
It was an error
Abdulfatah Fatima says
Help me with this
4243 base 5 – 13×4 base 5 = y 244 base 5. Find x and y
Rosie Smith says
I don’t get your 2012, number 2, can you explain in details
Sadeeq says
Great work.
James Uche says
It’s very lovely, and I really appreciate it, the problem I have is how can study well for the subject I don’t know to well,for instance I have problem with Chemistry
Neo says
This is very helpful. Thanks a lot dear. God bless you.